Abstraction Layers in Modern Geospatial
Workflows

A choice can be a burden

Chris Reudenbach

2025-12-04

Introduction

Modern geospatial workflows increasingly differ not in scientific method but in the amount of
operational complexity they hide. Whether processing Sentinel-2 imagery or computing
terrain derivatives, the core algorithms have not changed. What has changed is how much
low-level infrastructure (downloading, tiling, reprojection, cloud masking, indexing, mosaicking,
temporary file management) is exposed to the user.

This text explains why convenience layers such as gdalcubes, CDSE’s GetImage(), or
Rsagacmd play a structural role in contemporary geospatial analysis. We compare these
abstractions to “pure” R workflows using terra, and illustrate the practical impact using two
domains:

o Sentinel-2 processing (time series, indices, mosaics)
e SAGA terrain derivatives (slope, curvature, TPI)

The goal is not to prefer one system over another, but to clarify what each layer hides, why
that matters, and what the trade-offs are.

The Role of Convenience Layers

A convenience layer is a thin abstraction that removes repetitive, non-scientific tasks. Instead
of changing algorithms, it removes the plumbing around them.

Examples of what convenience layers eliminate:

¢ discovering and filtering STAC assets
e reconstructing tile mosaics and footprints

handling CRS negotiations

creating temporary VRTs and memory-safe processing chains
assembling multi-band stacks

passing parameters to command-line tools

This is why workflows with abstraction tend to be extremely short (5-15 lines), while the
same scientific operation in pure R often requires 200—400 lines of bookkeeping.

Convenience layers do not alter the scientific logic. They simply prevent infrastructure from

overwhelming analysis.

Sentinel-2: Three Processing Paradigms

Sentinel-2 can be processed efficiently in three conceptually distinct ways. The scientific goal—
building valid reflectance-based predictors—remains identical; the difference lies in where the

work is performed.

Comparative Overview (with Performance—Fidelity—Transparency Ratings)

Method Summary Pros Cons Perf. Fid. Transp.
gdal- Builds a 4D cube o Extremely fast o Enforces
cubes (x-y-t-band) and for multi-year time uniform grid e

performs lazy series e Clean Loses

mosaicking, temporal reducerse granule-level

reprojection, and Memory-safe, detail o

temporal minimal code e Limited

aggregation. Automatic mo- cloud-mask

Excellent for long saics/resampling control

time series; less
suitable for
per-date,
high-fidelity

scenes.

Method Summary Pros Cons Perf. Fid. Transp.

CDSE Executes JS e Near-native e OAuth

+ processing scripts 1020 m required ¢ Slow

GetIm- on ESA servers resolution e for long

age (cloud masks, Authentic ESA periods e
bands, indices). processing chaine Provider-
Returns Low disk specific STAC
near-native footprint e assetse JS
mosaics with ESA High-quality server scripts must be
QA. Great for mosaics maintained
high-quality scenes;
slower for long
time series.

Pure Fully manual local e Full scientific e Heavy code

terra workflow: control e volume o

work- downloading assets, Transparent and Fragile to

flow mosaicking, inspectable o provider
masking, Didactically changes e Slow
computing indices. excellent e for multi-year
Maximum Reproducible at AOIse High
scientific control; every detail maintenance
highest code load

volume; slowest
runtime.

Across the three approaches there is an implicit Pareto balance:

e gdalcubes sits near the performance corner: very fast and scalable, but with less
per-scene fidelity and less step-by-step transparency.

« CDSE + Getlmage occupies the fidelity corner: close to native Sentinel-2 scenes and
ESA’s own processing, but slower and backend-dependent.

e pure terra is closest to the transparency corner: every operation is explicit and in-
spectable, but at the cost of runtime and maintenance effort.

None of them dominates the others across all three axes.
Each method is optimal only conditional on what you prioritise (speed, scene fidelity, or

methodological transparency).

Applying the Same Logic: The SAGA Example

What happens with Sentinel-2 also did happen with terrain analysis. Computing slope,
curvature, TPI, or HAND (Height Above Nearest Drainage) purely in R means you must do
everything yourself: fetch DEM tiles, harmonise EPSG codes, mosaic them, crop them, build
masks, run low-level operators, and debug all intermediate steps. Almost none of these tasks
are geomorphological—they are administrative overhead.

Rsagacmd eliminates this by wrapping SAGA algorithms in R:

saga$ta_morphometry$slope_aspect_curvature(...)

The science is identical; the workflow is not. The convenience layer abstracts every non-scientific
step.

This parallel to Sentinel-2 shows: convenience layers are not shortcuts—they allow researchers
to work at the conceptual level rather than the infrastructural one.

Why We Return to STAC Here

All three workflows discussed on this page—gdalcubes, CDSE GetImage, and manual
terra workflows—begin with the same fundamental step:
discover Sentinel-2 scenes for the Burgwald AOI

At first glance this should be straightforward, because all modern EO backends expose Sentinel-2
through STAC endpoints.

However, the workflows diverge sharply in behaviour, reproducibility and data structures.
Although STAC defines a common schema, it functions much like a library card catalogue: it
tells you what exists, but not how the underlying items are stored, formatted, accessed, or
processed. STAC standardises the metadata, not the data structures, access mechanisms, or
processing behaviour of different providers.

STAC = the card index.

Providers = different libraries.

rstac / gdalcubes / CDSE = convenience layers helping you use the
index.

Because the underlying “libraries” differ, the STAC index cannot unify access. Providers expose
different asset keys, naming conventions, and access rules, even though the metadata schema is
shared.

Examples include:

o different asset names (B04_10m vs B04 vs COG-style filenames)

o different authentication layers (public COGs vs OAuth vs API keys)
o different mosaicking semantics (leastCC, mostRecent, bestPixel)
o different processing levels and QA availability (L1C, L2A, SCL, cloud masks)

As a result, STAC itself is not the abstraction layer — it only indexes what exists. The
actual abstraction must be implemented in client libraries such as rstac, gdalcubes, CDSE’s
GetImage(), or custom code.

STAC does not enforce canonical labeling. STAC describes what exists, not how it
is generated. A “uniform” STAC search yields highly non-uniform data.

The Cascade of Convenience Wrappers

Because (in our case) the underlying EO backends differ so much, R tooling must build layered
convenience wrappers on top.

Layer Function Examples
Raw STAC API Pure catalogue search /stac/search
rstac R interface (paging, fetching) stac_search(), items_fetch()

gdalcubes STAC Convert STAC — cube definitions stac_image_collection()
adapter

CDSE R package Provider-specific abstraction OAuth, JS scripts, ESA mosaics
Your workflow Actual geospatial analysis e.g. indices — mosaics — ML

Each layer abstracts away complexity—but also introduces provider lock-in.
This is why:
o gdalcubes can use AWS COGs but not CDSE’s JS processing

e CDSE: :GetImage can use ESA’s pipelines but not AWS COGs

e terra workflows do not bypass STAC; they simply use it at the lowest level—fetching
raw asset URLs and handling all processing locally without any higher-level convenience
abstraction.

STAC is unified. The provider and wrapper logic is not — that’s why the workflows
diverge.

Choosing the Right Abstraction

Again: There is no “best” method—only one that fits the balance between control, cognitive
load, and performance.

Use gdalcubes when:
¢ long time series dominate

o uniform grids are acceptable
o performance is critical

Use CDSE when:

o per-date fidelity matters
¢ cloud masking and indices should run server-side

Use pure terra when:

¢ you need exact methodological transparency
e teaching or QA requires inspecting every step

Use generic GIS wrappers like Rsagacmd, qgisprocess, rgrass7 when:
¢ you need high-quality terrain or hydrological derivatives
o you want to reuse the mature, specialised logic of full GIS suites (SAGA, GRASS, QGIS)

e you prefer not to re-implement complex algorithms (TPI, TWI, morphometry, flow
models. etc.) in pure R

o you need stable, well-tested operators with decades of domain optimisation behind them
e you rely on 1ink2GI to detect, configure, and initialise GIS backends so R can call them
transparently

Core Insight

All shown approaches perform the same science. They differ only in how much infrastructure
they ask the user to handle. The real decision is therefore not “Which algorithm?” but how
much low-level responsibility you want to carry:

e Abstraction reduces boilerplate and shields you from shifting provider APIs.

o Manual control increases transparency but also raises maintenance load, update overhead,
and error-susceptibility.

e Proper convenience wrappers minimise this burden by stabilising interfaces and absorbing
backend changes.

Developing a workflow is never merely technical. It is a negotiation between the level
of methodological precision, analytical depth, and scientific rigor you aim for — your
“scientific ambition” — and the “cognitive cost of plumbing”.

	Introduction
	The Role of Convenience Layers
	Sentinel‑2: Three Processing Paradigms
	Comparative Overview (with Performance–Fidelity–Transparency Ratings)
	Applying the Same Logic: The SAGA Example

	Why We Return to STAC Here
	The Cascade of Convenience Wrappers

	Choosing the Right Abstraction
	Use gdalcubes when:
	Use CDSE when:
	Use pure terra when:
	Use generic GIS wrappers like Rsagacmd, qgisprocess, rgrass7 when:

	Core Insight

